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1 Introduction

Traditional network security focuses on the boundary between a protected intranet and the Internet,
with the assumption being that attacks come from the outside. The common architecture uses net-
work intrusion detection systems (NIDSs) and firewalls to watch for and block suspicious network
traffic trying to enter the protected intranet. This is a very appropriate first line of defense, since
many digital attacks do indeed come from the wild. But, it leaves the protected intranet unprotected
from an intruder who gets past the outer defenses.1

It is increasingly important to detect and contain compromised hosts, in addition to attempting
to prevent initial compromise. Such containment offers a degree of damage control within the
intranet, preventing one compromised system from infecting the others unchecked (NIDSs and
firewalls are rarely used on the bulk of internal traffic). In addition, such containment is needed
to reduce liability—as attack traceback techniques improve, increasing numbers of attacks may be
traced to their apparent sources. Dealing with the aftermath of being blamed for attacks can be
expensive (in money and time), even if the source machine in question is subsequently found to
have been compromised.

A mechanism for identifying compromised hosts must have two features: (1) it must be able
to observe potentially-malicious activities, and (2) it must not be trivially susceptible to being
disabled. Host-based IDSs have the first feature but not the second; they are highly vulnerable to
exactly the software whose soundness is being questioned, a fact illustrated by the many rootkits
that disable host IDS checks. A NIDS at the edge of the intranet has the second feature but lacks
much of the first; it can observe attacks launched outward but does not see attacks on other systems
in the intranet. To also contain problem machines, a mechanism must have a third feature: (3)
control over their access to the network.

One promising approach is to extend the various network interfaces (NIs) within the intranet
to look for and perhaps contain compromised hosts [15]. By “NI”, we mean some component that
sits between a host system and the rest of the intranet, such as a network interface card (NIC) or a
local switch port. These NIs are isolated from the host OS, running distinct software on separate
hardware, and are in the path of a host’s network traffic. Thus, they have all three features above. In
addition, because they are in their host’s path to the LAN, such NIs will see every packet, can fail
closed, can isolate their host if necessary, and can actively normalize [16, 21] the traffic. We refer
to NIs extended with intrusion detection and containment functionality as self-securing network
interfaces.

Self-securing NIs enjoy the scalability and coverage benefits of recent distributed firewall
systems [14, 19, 1]. They also offer an excellent vantage point for looking inward at a host and
watching for misbehavior. In particular, many of the difficulties faced by NIDSs [30] are avoided:
there are no topology or congestion vagaries on an NI’s view of packets moved to/from its host and
there are no packets missed because of NI overload. This allows the NI to more accurately shadow
important host OS structures (e.g., IP route information, DNS caches, and TCP connection states)
and thereby more definitively identify suspicious behavior.

This paper details several examples of how the NI’s view highlights host misbehavior. First,
many of the NIDS attacks described by Ptacek and Newsham [30] involve abusing TTLs, frag-

1Our focus in this work is on network intruders who successfully gain access to an internal machine, as opposed to
insiders who can exploit physical access to the hardware.
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mentation, or TCP sequencing to give the NIDS a different view of sent data than the target host.
From its local vantage, a self-securing NI can often tell when use of these networking features are
legitimate. For example, IP fragmentation is important, but is only used by a well-behaved packet
source in certain ways; a self-securing NI can shadow state and identify these. The IP Time-To-
Live (TTL) field may vary among packets seen by a NIDS at an intranet edge, because packets
may traverse varied paths, but should not vary in the original packets sent by a given host for a
single TCP stream. After taking away most deception options, a self-securing NI (or other NIDS)
can use traditional NIDS functionality to spot known attacks [16].

Second, state-holding DoS attacks will be more visible, since the NI sees exactly what the host
receives and sends. For example, the NI can easily tell if a host is ignoring SYN/ACK packets,
as would be the case if it is participating in a “SYN bomb” DoS attack. Third, the random propa-
gation approach used by the recent Code-Red worm [8] (and follow-ons [7, 9, 35]) can be readily
identified by the abnormal behavior of contacting large numbers of randomly-chosen IP addresses
with no corresponding DNS translations. To detect this, a self-securing NI can shadow its host’s
DNS cache and check the IP address of each new connection against it.

The main contributions of this paper are: (1) the description of an architecture, based on self-
securing NIs, for addressing a two-stage attack model that can be expected to grow in importance
as intranet perimeter strength grows; and (2) the description of several host misbehavior detectors,
not previously seen by the authors, enabled by the placement of self-securing NIs at the host’s
LAN access point.

The remainder of this paper is organized as follows. Section 2 expands on the threat model
being explored and how NI-embedded intrusion detection and containment functionality helps.
Section 3 describes a prototype self-securing NI used for experimenting with the concepts. Sec-
tion 4 describes several example detectors for self-securing NIs. Section 5 discusses related work.

2 Towards per-machine perimeters

The common network security approach maintains an outer perimeter (perhaps with a firewall,
some proxies, and a NIDS) around a protected intranet. This is a good first line of defense against
network attacks. But, it leaves the entire intranet wide open to an attacker who gains control of any
machine within the perimeter. This section expands on this threat model, self-securing NIs, how
they help, and their weaknesses.

2.1 Threat model

The threat with which we are most concerned here is a multi-stage attack. In the first stage, the
attacker compromises any host on the inside of the intranet perimeter. By “compromises,” we
mean that the attacker subverts its software system, gaining the ability to run arbitrary software on
it with OS-level privileges. In the second stage, the attacker uses the internal machine to attack
other machines within the intranet.

This form of two-stage attack is of concern because only the first stage need worry about
intranet-perimeter defenses; actions taken in the second stage do not cross that perimeter. Worse,
the first stage need not be technical at all; an attacker can use social engineering, bribery, a dis-
covered modem on a desktop, or theft (e.g., of a password or insecure laptop) for the first stage.
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Figure 1: Self-securing network interfaces. (a) shows the common network security configuration, wherein a
firewall and a NIDS protect LAN systems from some WAN attacks. (b) shows the addition of self-securing NIs, one
for each LAN system.

Finding a single hole is unlikely to be difficult in any sizable organization. Once internal access is
gained, the second stage can use known, NIDS-detectable system vulnerabilities, since it does not
enter the view of the perimeter defenses. In some environments, depending on their configuration,
known attacks launched out of the organization may also proceed unhampered; this depends on
whether the NIDS and firewall policies are equally restrictive in both directions.

Our main focus is on the second stage of such two-stage attacks. A key characteristic of the
threat model described is that the attacker has software control over a machine inside the intranet,
but does not have physical access to its hardware. We are not specifically trying to address insider
attacks, in which the attacker would also have physical access to the hardware and its network
connections. Clearly, for a self-securing NI to be effective, we must also assume that neither the
administrative console nor the NI itself are compromised.

2.2 Self-securing network interfaces

A countermeasure to our two-stage attack scenario must have two properties: (1) it must be isolated
from the system software of the first stage’s target, since it would otherwise be highly vulnerable
in exactly the situations we want it to function, and (2) it must be close to its host in the network
path, or it will be unable to assist with intranet containment.2 We focus on the network interface
(NI) as a good place for countermeasures.

The role of the NI in a computer system is to move packets between the system’s components
and the network. A self-securing NI additionally examines the packets being moved and enforces
network security policies. Like network firewalls and NIDSs, a self-securing NI operates indepen-
dently of host software; its checks and rules remain in effect even when the corresponding host OS
is compromised. (Successful intruders and viruses commonly disable any host-based mechanisms

2Many of the schemes explored here could be also used at the edge to detect second-stage attacks from inside to
out. Our goal of internal containment requires finer-grained perimeters. As discussed below, distributed firewalls can
also protect intranet nodes from internal attacks, though they must be extended to what we call self-securing NIs in
order to benefit from the containment and source-specific detection features described.
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to hide their presence and bypass restrictions.) Immediate proximity also allows a self-securing NI
to normalize and throttle its host’s network traffic at the source.

In most systems, the base functionality of moving packets between the host software and the
wire is implemented in a network interface card (NIC). For our purposes, the component labeled
as “NI” will have three properties: (1) it will perform the base packet moving function, (2) it
will do so from behind a simple interface with few additional services, and (3) it will be isolated
(i.e., compromise independent) from the host software. Examples of such NIs include NICs, leaf
switches in a LAN, DSL or cable modems, and NI emulators within a virtual machine monitor [37].
The benefits of embedding detection and containment functionality in an NI applies to all of these.

Self-securing NIs enforce policies set by the network administrator, much like distributed
firewalls [14, 19, 1]. In fact, administrators would configure and manage self-securing NIs over
the network, since they must obviously be connected directly to it — this approach is necessary for
an administrator to use the NI to protect the network from its host system; even the host OS and
its most-privileged users must not be able to reconfigure or disable the NI’s policies. Alerts about
suspicious activity will be sent to administrative systems via the same secure channels. Prior work
provides solid mechanisms for remote policy configuration of this sort, and recent research [4, 6,
14, 19] and practice [2, 22] clarifies their application to distributed firewall configuration.

2.3 Self-securing NI features

A self-securing NI performs intrusion detection on a host’s network traffic, impedes communica-
tion when compromise is detected (if so configured), and normalizes odd traffic. For addressing
the two-stage attack threat, self-securing NIs provide three main features.

First, a self-securing NI sees the packets as sent and received by its host. This allows it to see
misuse of low-level networking features, as is the case in many deception attacks on NIDSs. It also
allows it to shadow host state and more clearly identify attack patterns than could a less-localized
NIDS.

Second, a self-securing NI can slow, filter, or cut off communication to or from a host. For
inbound traffic, this is a traditional firewall. For outbound traffic, this is a form of containment,
which may be enacted if the host is determined to be compromised or otherwise misbehaving.
Interestingly, the NI’s position in the host’s communication path means that it fails closed. Among
other things, this addresses concerns of overloading attacks on its NIDS—such overloading slows
down the NI, and thus the host, but does not cause it to miss packets. Thus, a compromised host
using this tactic on its self-securing NI is denying service only to itself.

Third, a self-securing NI is in an ideal position to normalize outbound traffic. Doing it at the
source leverages the effort involved in detecting NIDS deception attacks, since the two require
similar state tracking.

Additional distributed firewall benefits In addition to host containment and local viewpoint,
per-machine self-securing NIs share the benefits of previous distributed firewall systems. Previous
researchers (e.g., [14, 19]) have made a strong case for distributing firewall and NIDS rules among
the endpoints. In particular, distributing such functionality among end-points avoids a central
bottleneck (scaling naturally with the number of machines on the network) and protects systems
from intranet machines as well as the WAN.3 These features do not require separation from the

3Distributed firewalls protect against internal machines by protecting targets rather than containing sources. It
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host OS, so host-based IDS and firewall mechanisms will enjoy them.
The scalability benefit, in particular, impacts the cost consequences of a self-securing NI com-

ponent. Each endpoint’s NI is responsible for checking only the traffic to and from that one end-
point. Therefore, the marginal cost of the required NI resources will be low for common desktop
network links [14], particularly when their utilization is considered. In comparison, the cost of
equivalent aggregate resources in any centralized containment configuration would make it expen-
sive (in throughput or dollars) or limit the checking that it can do, even if one were willing to suffer
the wiring and performance costs of routing all LAN packets through a central point.

2.4 Costs, limitations, and weaknesses

Self-securing NIs (SSNIs) are promising, but there is no silver bullet for network security. SSNIs
can only detect attacks that use the network and, like most intrusion detection systems [5], are
susceptible to both false positives and false negatives. Containment responses to false positives
yields denial of service, and failure to notice false negatives leaves intruders undetected.

Like any NIDS component, a self-securing NI is subject to a number of attacks [30]. Most
insertion attacks are either detectable signals (when from the host) and/or subject to normaliza-
tion [16, 21]. DoS attacks on the NI’s detection capabilities are converted to DoS on the host; for
attacks launched from the host, this is an ideal scenario.

As the codebase inside the NI increases, it will inevitably become more vulnerable to many of
the same attacks as host systems, such as buffer overflows. Compromised scanning code sees the
traffic it scans (by design) and will most likely be able to leak information about it via some covert
channel. Assuming that the scanning code decides whether the traffic it scans can be forwarded,
malicious scanning code can certainly perform a denial-of-service attack on that traffic. The largest
concerns, however, revolve around the potential for man-in-the-middle attacks and for effects on
other traffic. In traditional passive NIDS components, such DoS and man-in-the-middle attacks
are not a problem. Although we know of no way to completely prevent this, the software design
of our prototype attempts to reduce the power of individual scanning programs.

Beyond these fundamental limitations, there are also several practical costs and limitations.
First, the NI, which is usually a commodity component, will require additional CPU and memory
resources for most of the attack detection and containment examples above. Although the marginal
cost for extra resources in a low-end component is small, it is non-zero. Providers and adminis-
trators will have to consider the trade-off between cost and security in choosing which scanners
to employ. Second, additional administrative overheads are involved in configuring and manag-
ing self-securing NIs. The extra work should be small, given appropriate administrative tools, but
again will be non-zero. Third, like any in-network mechanism, a self-securing NI cannot see inside
encrypted traffic. While IP security functionality may be offloaded onto NI hardware in many sys-
tems, most application-level uses of encryption will make some portion of network traffic opaque.
If and when encryption becomes more widely utilized, it may reduce the set of attacks that can
be identified from within the NI. Fourth, each self-securing NI inherently has only a local view of
network activity, which prevents it from seeing patterns of access across systems. For example,

is possible that this is enough. We believe, however, that the extra visibility and control offered by self-securing
NIs are valuable. For example, the detectors described in Section 4 exploit the NI vantage point to reduce detection
assumptions.
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probes and port scans that go from system to system are easier to see at aggregation points. Some
such activities will show up at the administrative system when it receives similar alerts from mul-
tiple self-securing NIs. But, more global patterns are an example of why self-securing NIs should
be viewed as complementary to edge-located protections. Fifth, for host-embedded NIs, a physical
intruder can bypass self-securing NIs by simply replacing them (or plugging a new system into
the network). The networking infrastructure itself does not share this problem, giving switches an
advantage as homes for self-securing NI functionality.

3 A self-securing NI prototype

This section describes our prototype self-securing NI. The prototype self-securing NI is actually an
old PC (referred to below as the “NI machine”) with two Ethernet cards, one connected to the real
network and one connected point-to-point to the host machine’s Ethernet link. Figure 3 illustrates
the hardware setup. Clearly, the prototype hardware characteristics differ from real NIC or switch
hardware, but it does allow us to explore the self-securing NI features that are our focus in this
work.

Examining network traffic in detail will increase the codebase executing in an NI. As a re-
sult, well-designed system software will be needed for self-securing NIs, both to simplify scanner
implementations and to contain rogue scanners (whether buggy or compromised). One goal of
our prototype’s design is to prevent malicious scanning code from executing arbitrary man-in-the-
middle attacks: such code should not be able to replace the real stream with its own arbitrary
messages and should not be able to read or filter traffic beyond that which it was originally permit-
ted to control.

3.1 Internal software architecture

Our prototype’s software architecture, illustrated in Figure 2, is much like any OS, with a trusted
kernel and a collection of untrusted applications. The trusted NI kernel manages the real network
interface resources, including the host and network links. The application processes, called scan-
ners, use an API offered by the NI kernel to access selected network traffic and to convey detection
and containment decisions. Administrators configure access rights for scanners via a secure chan-
nel.

Scanners. Non-trivial traffic scanning code is encapsulated into application processes called
scanners. This allows the NI kernel to fault-isolate them, control their resource usage, and bound
their access to network traffic. With a well-designed API, the NI kernel can also simplify the task
of writing scanning code by hiding some unnecessary details and protocol reconstruction work. In
this design, programming a scanner should be similar to programming a network application using
sockets. (Of course, scanners that look at network protocols in detail, rather than application-level
exchanges, will require detailed understanding of those protocols.)

Scanner interface. Table 1 lists the basic components of the scanner API exported by the NI
kernel. With this interface, scanners can examine specific network traffic, alert administrators of
potential problems, and prevent unacceptable traffic from reaching its target.

The interface has four main components. First, scanners can subscribe to particular network
traffic, which asks the NI kernel for read and/or contain rights; the desired traffic is specified
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Figure 2: Self-securing NI software architecture. A “NI kernel” manages the host and network links. Scanners
run as application processes. Scanner access to network traffic is limited to the API exported by the NI kernel.

with a packet filter language [25]. The NI kernel grants access only if the administrator’s configu-
ration for the particular scanner allows it. In addition to the basic packet capture mechanism, the
interface allows a scanner to subscribe to the data stream of TCP connections, hiding the stream
reconstruction work in the NI kernel.

Second, scanners ask the NI kernel for more data via a read command. With each data item
returned, the NI kernel also indicates whether it was sent by or to the host. Third, for subscriptions
with contain rights, a decision for each data unit must be conveyed back to the kernel. The
data unit can either be passed along (i.e., forwarded to its destination) or cut (i.e., dropped without
forwarding). For a data stream subscription, cut and pass refer to data within the stream; in the
base case, they refer to specific individual packets. For TCP connections, a scanner can also decide
to kill the connection.

Fourth, a scanner can inject pre-registered data into scanned communications, which may
involve insertion into a TCP stream or generation of an individual packet. A scanner can also send
an alert, coupled with arbitrary information or even copies of packets, to an administrative system.

This scanner API simplifies programming, allows necessary powers, and yet restricts the dam-
age a rogue scanner can do. A scanner can ask for specific packets, but will only see what it is
allowed to see. A scanner can decide what to pass or drop, but only for the traffic to which it has
contain rights. A scanner can inject data into the stream, but only pre-configured data in its
entirety. Combining cut and inject allows replacement of data in the stream, but the pre-configured
inject data limits the power that this conveys. Alerts can contain arbitrary data, but they can only
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Command Description

Subscribe Ask to scan particular network data
Read Retrieve more from subscribe buffers
Pass Allow scanned data to be forwarded
Cut Drop scanned data
Kill Terminate the scanned session (if TCP)
Inject Insert pre-registered data and forward
Alert Send an alert message to administrator

Table 1: Network API exported to scanner applications. This interface allows an authorized scanner to examine
and block specific traffic, but bounds the power gained by a rogue scanner. Pass, cut, kill, and inject can only be used
by scanners with both read and contain rights.

be sent to a pre-configured adminsitrative system.
NI Kernel. The NI kernel performs the core function of the network interface: moving pack-

ets between the host system and the network link. In addition, it implements the functionality
necessary to support basic scanner (i.e., application) execution and the scanner API. As in most
systems, the NI kernel owns all hardware resources and gates access to them. In particular, it
bounds scanners’ hardware usage and access to network traffic.

Packets arrive in NI buffers from the host and the network link. As each packet arrives, the NI
kernel examines its headers and determines whether any subscriptions cover it. If not, the packet
is immediately forwarded to its destination. If there is a subscription, the packet is buffered and
held for the appropriate scanners. After each contain-subscribing scanner conveys its decision
on the packet, it is either dropped (if any say drop) or forwarded. For scanners that examine full
packets (rather than raw frames), reconstitution of fragmented packets is done by the NI kernel; if
not cut, normalized fragments are then forwarded.

The NI kernel reconstructs TCP streams to both simplify and limit the power of scanners
that focus on application-level exchanges. As with any NIDS, such reconstruction requires an
interesting network stack implementation that shadows the state of both endpoints based on the
packets exchanged. Notice that such shadowing involves reconstructing two data streams: one
in each direction. When a scanner needs more data than the TCP window allows, indicated by
blocking reads from a scanner with pending decisions, the NI kernel must forge acknowledgement
packets to trigger additional data sent from endpoints. In addition, when data is cut or injected into
streams, all subsequent packets must have their sequence numbers adjusted appropriately. So that
data seen by a scanner matches that seen by the destination, a normalized version is forwarded.

Administrative interface. The NI’s administrative interface serves two functions: receiving
configuration information and sending alerts. (Although we group them here, the two functions
could utilize different channels.) The main configuration information is scanner code and associ-
ated access rights. For each scanner, provided access rights include allowed subscriptions (read
and contain) and allowed injections. When the NI kernel starts a new scanner, it remembers
both, preventing a scanner from subscribing to any other traffic or injecting arbitrary data (or even
other scanners’ allowed injections). When requested by a scanner, the NI kernel will send an
alert via the administrative interface. Overall, scanner transmissions are restricted to the allowed
injections and alert information sent to pre-configured administrative systems.
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3.2 Prototype implementation

Our software runs on the NetBSD 1.4.3 operating system. Both network cards are put into “promis-
cuous mode,” such that they grab copies of all frames on their Ethernet link; this configuration
allows the host machine’s real Ethernet address to be used for communication with the rest of the
network. Our NI kernel, which we call Siphon, sits inside the NetBSD kernel and taps into the
relevant device drivers to acquire copies of all relevant frames arriving on both network cards.
Frames destined for the NI machine are allowed to flow into NetBSD’s normal in-kernel network
stack. Frames to or from the host machine go to Siphon. All other frames are dropped.

Scanners run as application processes. Scanners communicate with Siphon via named UNIX
sockets, receiving subscribed-to traffic via READ and passing control information via WRITE. Data-
gram sockets are used for getting copies of frames, and stream sockets are used for reconstructed
data streams.

Frame-level scanning interface. For each successful READ call on the socket, a scanner gets
a small header and a received frame. The header indicates the frame’s length and whether it came
from the host or from the network. In addition, each frame is numbered according to how many
previous frames the scanner has READ: the first frame read is #1, the second frame is #2, and so
on. cut and pass decisions are given in terms of this frame number. inject requests specify which
pre-registered packet should be sent (via an index into a per-scanner table) and in which direction.

Reconstructed-stream scanning interface. For reconstructed-stream scanning, several sock-
ets are required. One listens for new connections from Siphon. An ACCEPT on this connection
creates a new socket that corresponds to one newly established TCP connection between the host
machine and some other system. READs and WRITEs to such new connections receive data to be
scanned and convey decisions and requests. cut and pass decisions specify a byte offset and length
within the stream in a particular direction. inject requests specify the byte offset at which the pre-
registered data should be inserted into the stream (shifting everything after it forward by length
bytes).
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The NI kernel: Siphon. Siphon performs the basic function of a network interface, moving
packets between the host and the network. It also exports the scanner API described above.

Each frame received (from the host or from the LAN) is buffered and passed through a packet
filter engine. If the frame does not match any of the packet filter rules, it is immediately forwarded
to its target (either the host machine or the network link). There are three types of packet filter rules:
prevent, scan, and reconstruct. If the frame matches a prevent rule, it is dropped immediately; pre-
vent rules provide traditional firewall filtering without the overhead of an application-level scanner.
If the frame matches a scan rule, it is written to the corresponding scanner’s datagram socket. If the
frame matches a reconstruct rule, it is forwarded to the TCP reconstruction code. For frames that
match scan and reconstruct rules for subscriptions with contain rights, Siphon keeps copies and
remembers the decisions that it needs. A frame is forwarded if and only if all subscribed scanners
decide pass; otherwise, it is dropped.

Siphon’s TCP reconstruction code translates raw Ethernet frames into the reconstructed-stream
interface described above. Upon seeing the host agree to a new TCP connection, Siphon creates
two protocol control blocks, one to shadow the state of each end-point. Each new packet indicates
a change to one end-point or the other. When the connection is fully established, Siphon opens
and CONNECTs a stream socket to each subscribed scanner. When one side tries to send data to
the other, that data is first given to subscribed scanners. If all such scanners with contain rights
decide pass, packets are created, buffered, transmitted, and retransmitted as necessary. When the
TCP connection closes, Siphon CLOSEs the corresponding stream socket. If a scanner asks for
some data to be cut or injected, the sequence numbers and acknowledgements of subsequent pack-
ets must be adjusted accordingly. In addition, Siphon must send acknowledgements for the cut data
once all bytes up to it have been acknowledged by the true receiver. Kill requests are handled by
generating packets with the RST flag set and sending one to each end-point. Blocked read requests
for containing stream scanners are a bit tricky. For small amounts of additional data, the TCP
window can be opened further to get the sender to provide more data. Otherwise, Siphon must
forge acknowledgements to the source and then handle retransmissions to the destination.

The administrative interface for the current prototype consists of a directly-connected terminal
interface. Clearly, this is not appropriate for practical management of per-host self-securing NIs.
We plan to adopt one of the well-established cryptography-based protocols [2, 4, 6, 14, 19, 22] for
remotely distributing policy updates and receiving alerts.

3.3 Discussion

Our prototype is still young, with the main goal of allowing us to experiment with NI-embedded
scanners. Although it is too early to draw definitive conclusions, we believe that its software
architecture is valuable. Our experiences indicate that the scanner API makes writing scanners
relatively straightforward, though it could be made more so with Bro-like language support [28] at
the scanner level. More importantly, restricting scanners to this API bounds the damage they can
do. Certainly, a scanner with contain rights can prevent the flow of traffic that it scans, but its
ability to prune other traffic is removed and its ability to manipulate the traffic it scans is reduced.

A scanner with contain rights can play a limited form of man-in-the-middle by selectively
utilizing the inject and cut interfaces. The administrator can minimize the danger associated with
inject by only allowing distinctive messages. (Recall that inject can only add pre-registered mes-
sages in their entirety. Also, a scanner cannot cut portions of injected data.) In theory, the ability
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Configuration Roundtrip Bandwidth
No NI machine 0.16 ms 11.11 MB/s
No scanners 0.23 ms 11.11 MB/s
Frame scanner 0.23 ms 11.08 MB/s
Stream scanner 0.23 ms 10.69 MB/s

Table 2: Base performance of the self-securing NI prototype. Roundtrip latency is measured with 20,000
pings. Throughput is measured by RCPing 100MB. “No NI machine” corresponds to the host machine with no self-
securing NI in front of it. “No scanners” corresponds to Siphon immediately passing on each packet. “Frame scanner”
corresponds to copying all IP packets to a read-only scanner. “Stream scanner” corresponds to reconstructing the TCP
stream for a read-only scanner.

to transparently cut bytes from a TCP stream could allow a rogue scanner to rewrite the stream
arbitrarily. Specifically, the scanner could clip bytes from the existing stream and keep just those
that form the desired message. In practice, we do not expect this to be a problem; unless the stream
is already close to the desired output, it will be difficult to construct the desired output without
either breaking something or being obvious (e.g., the NI kernel can be extended to watch for such
detailed clipping patterns). Still, small cuts (e.g., removing the right “not” from an e-mail message)
could produce substantial changes that go undetected.

3.4 Basic overheads

Although performance is not our focus, it is useful to quantify Siphon’s effect on NI throughput
and latency. As found by previous researchers [14, 16, 28], we observe that NIDS and normal-
ization functions can be made reasonably efficient for individual network links. Also, the internal
protection boundary between scanners and the trusted base comes with a reasonable cost.

For all experiments in this paper, the NI machine is equipped with a 300MHz Pentium II,
128MB of main memory, and two 100Mb/s Ethernet cards. After subtracting the CPU power used
for packet management functions that could be expected to be hardware-based, we believe that
this dated system is a reasonable approximation of a feasible NIC or switch. The host machine
runs SuSe Linux 2.4.7 and is equipped with a 1.4GHz Pentium III, 512MB of main memory, and
a 100Mb/s Ethernet card. Although Siphon is operational, little tuning has been done.

Table 2 shows results for four configurations: the host machine alone (with no NI machine),
the NI machine with no scanners, the NI machine with a read-only frame-level scanner matching
every packet, and the NI machine reconstructing all TCP streams for a read-only scanner. We
observe a 47% increase in round-trip latency with the insertion of the NI machine into the host’s
path, but no additional increase with scanners. We observe minimal bandwidth difference among
the four configurations, although reconstructing the TCP stream results in a 4% reduction.

4 Example detectors

This section describes and explores four examples of detectors that work particularly well with
self-securing NIs. Each exploits the NI’s proximity to the host and the corresponding ability to
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see exactly what it sends and receives. For each, we describe the attack, the scanner, relevant
performance data, and associated issues.

4.1 Detecting IP-based propagation

A highly-visible network attack in 2001 was the Code-Red worm (and its follow-ons) that propa-
gated rapidly once started, hitting most susceptable machines in the Internet in less than a day [26].

What the scanner looks for: The Code-Red worm and follow-ons spread exponentially by
having each compromized machine target random 32-bit IP addresses. This propagation approach
is highly effective because the IP address space is densely populated and relatively small. But, it
exhibits an abnormal communication pattern. Although done occasionally, it is uncommon for a
host to connect to a new IP addresses without first performing a name translation via the Domain
Name System (DNS) [24]. Our scanner watches DNS translations and checks the IP addresses of
new connections against them. It flags any sudden rise in the count of “unknown” IP addresses as
a potential problem.

How the scanner works: The “Code-Red scanner” consists of two parts: shadowing the host
machine’s DNS table and checking new connections against it. Upon initialization, the scanner
subscribes to three types of frames. The first two specify UDP packets sent by the host to port 53
and sent by the network from port 53 (port 53 is used for DNS traffic).4 The third specifies TCP
packets sent by the host machine with only the SYN flag set, which is the first packet of TCP’s
connection-setup handshake. Of these, only the third subscription includes contain rights.

Each DNS reply can provide several IP addresses, including the addresses of authoritative
name servers. When it reads a DNS reply packet, the scanner parses it to identify all provided
IP addresses and their associated times to live (TTLs). The TTL specifies for how long the given
translation is valid. Each IP address is added to the scanner’s table and kept at least until the TTL
expires. Thus, the scanner’s table should contain any valid translations that the host may have in its
DNS cache. The scanner prunes expired entries only when it needs space, since host applications
may utilize previous results from gethostbyname() even after the DNS translations expire.

The scanner checks the destination IP addresses of the host machine’s TCP SYN packets
against this table. If there is a match, the packet is passed. If not, the scanner considers it a
“random” connection. The current policy flags a problem when there are more than two unique
random connections in a second or ten in a minute.

When an attack is detected: The scanner’s current policy reacts to potential attacks by send-
ing an alert to the administrative system and slowing down excessive random connections. It stays
in this mode for the next minute and then re-evaluates and repeats if necessary. The alert provides
the number of random connections over the last minute and the most recent destination to which
a connection was opened. Random connections are slowed down by delaying decisions; in attack
reaction mode, the scanner tells Siphon pass for one of the SYN packets every six seconds. This
allows such connections to make progress, somewhat balancing the potential for false positives
with the desire for containment. If all susceptible hosts were watched and contained in this way,
the 14 hour propagation time of Code-Red (version 2) [26] would have grown to over a month
(assuming the original scan rate was 10 per second per infected machine [35]).

4Although we see none in our networks, DNS traffic can be passed on TCP port 53 as well. Our current scanner
will not see this, but could easily be extended to do so.
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Performance data: As expected, given the earlier roundtrip latency evaluation, the DNS scan-
ner adds negligible latency to DNS translations and TCP connection establishment. We evaluate
the table sizes needed for the Code-Red scanner by examining a trace of all DNS translations for
10 desktop machines in our research group over 2 days. Assuming translations are kept only until
their TTL’s expire, each machine’s DNS cache would contain an average of 209 IP addresses. The
maximum count observed was 293 addresses. At 16 bytes per entry (for the IP address, the TTL,
and two pointers), the DNS table would require less than 5KB.

It is interesting to consider the table size required for an aggregate table kept at an edge router.
As a partial answer, we observe that a combined table for the 10 desktops would require a maxi-
mum of 750 entries (average of 568) or 12KB. This matches the results of a recent DNS caching
study [20], which finds that caches shared among 5 or more systems exhibit a 80–85% hit rate.
They found that aggregating more client caches provides little additional benefit. Thus, one ex-
pects an 80–85% overlap among the caches, leaving 15–20% of the entries unique per cache. Thus,
10,000 systems with 250 entries each would yield approximately 375,000–500,000 unique entries
(6MB–8MB) in a combined table.

Discussion: We have not observed false positives in small-scale testing (a few hours) in front
of a user desktop, though more experience is needed. The largest false positive danger of the
Code-Red scanner is that other mechanisms could be used (legitimately) for name translation.
There are numerous research proposals for such mechanisms [36, 32, 42], and even experimenting
with them would trigger our scanner. Administrators who wish to allow such mechanisms in their
environment would need to either disable this scanner or extend it to understand the new name
translation mechanisms.

With a scanner like this in place, different tactics will be needed for worms to propagate
without being detected quickly. One option is to slow the scan rate and “fly under the radar,”
but this dramatically reduces the propagation speed, as discussed above. Another approach is to
use DNS’s reverse lookup support to translate random IP addresses to names, which can then be
forward translated to satisfy the scanner’s checks. But, extending the scanner to identify such
activity would be straightforward. Yet another approach would be to explore the DNS name space
randomly5 rather than the IP address space; this approach would not enjoy the relevant features
of the IP address space (i.e., densely populated and relatively small). There are certain to be
other approaches as well. The scanner described takes away a highly convenient and effective
propagation mechanism; worm writers are thus forced to expend more effort and/or to produce
less successful worms. So goes the escalation “game” of security.

An alternate containment strategy, blindly restricting the rate of connections to new desti-
nations, has recently been proposed [40]. The proposed implementation (extending host-based
firewall code) would not work in practice, since most worms would be able to disable it. But, a
self-securing NI could use this approach, if further study revealed that it really would not impede
legitimate work. Note that such rate throttling at the intranet edge may not be effective, because
techniques like local subnet scanning [35] would allow a worm to parallelize external targetting.

Finally, it is worth noting that the Code-Red worms exploited a particular buffer overflow
that was well-known ahead of time. A HTTP scanner could easily identify requests that attempt to
exploit it and prevent or flag them. The DNS-based scanner, however, will also spot worms, such as

5The DNS “zone transfer” request could short-circuit the random search by acquiring lists of valid names in each
domain. Many domains disable this feature. Also, self-securing NIs could easily notice its use.
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the Nimda worm, that use random IP-based propagation but other security holes. Coincidentally,
early information about the “SQL Slammer” worm [7] indicates that it would be caught by this
same scanner.

4.2 Detecting claim-and-hold DoS attacks

Qie et al. [31] partition DoS attacks into two categories: busy attacks (e.g., overloading network
links) and claim-and-hold attacks. In the latter, the attacker causes the victim to allocate a limited
resource for an extended period of time. Examples include filling IP fragment tables (by sending
many “first IP fragment” frames), filling TCP connection tables (via “SYN bombing”), and ex-
hausting server connection limits (via very slow TCP communication [31]). A host doing such
things can be identified by its self-securing NI, which sees what enters and leaves the host when.
As a concrete example, this section describes a scanner for SYN bomb attacks.

What the scanner looks for: A SYN bomb attack exploits a characteristic of the state tran-
sitions within the TCP protocol [29] to prevent new connections to the victim. The attack consists
of repeatedly initiating, but not completing, the three-packet handshake of initial TCP connection
establishment, leaving the target with many partially completed sequences that take a long time to
“time out.” Specifically, an attacker sends only the first packet (with the SYN flag set), ignoring
the victim’s correct response (a second packet with the SYN and ACK flags set). The scanner
watches for instances of inbound SYN/ACK packets not receiving timely responses from the host.
A well-behaved host should respond to a SYN/ACK with either an ACK packet (to complete the
connection) or a RST packet (to terminate an undesired connection).

How the scanner works: The scanner watches all inbound SYN/ACK packets and all out-
bound ACK and RST packets. It works by maintaining a table of all SYN/ACKs destined to the
host that have not yet been answered. Whenever a new SYN/ACK arrives, it is added to the ‘wait-
ing for reply’ table with an associated timestamp and expiration time. Retransmitted SYN/ACKs
do not change these values. If a corresponding RST packet is sent by the host, the entry is removed.
If a corresponding ACK packet is sent, the entry is moved to a ‘reply sent’ cache, whose role is
to identify retransmissions of answered SYN/ACK packets, which may not require responses; en-
tries are kept in this cache until the connection closes or 240 seconds (the official TCP maximum
roundtrip time) passes.

If no answer is received by the expiration time, then the scanner considers this to be an ignored
SYN/ACK. Currently, the expiration time is hard-coded at 3 seconds. The current policy flags a
problem if there are more than 2 ignored SYN/ACKs in a one minute period.

When an attack is detected: The SYN bomb scanner’s current policy reacts to potential
attacks only by sending an alert to the administrative system. Other possible responses include
delaying or preventing future SYN packets to the observed victim (or all targets) or having Siphon
forge RST packets to the host and its victim for the incomplete connection (thereby clearing the
held connection state).

Performance data: The SYN bomb scanner maintains a histogram of the observed response
latency of its host to SYN/ACK packets. Under a moderate network load, over a one hour period
of time, a desktop host replied to SYN/ACKs in an average of 26 milliseconds, with the minimum
being under 1 and the maximum being 946 milliseconds. Such data indicates that our current grace
period of 3 seconds should result in few false positives.
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Discussion: There are two variants of the SYN bomb attack, both of which can be handled
by self-securing NIs on the attacking machine. In one variant, the attacker uses its true address in
the source fields, and the victim’s responses go to the attacker but are ignored. This is the variant
targetted by this scanner. In the second variant, the attacker forges false entries in the SYN packets’
source fields, so that the victim’s replies go to other machines. A self-securing NI on the attacker
machine can prevent such spoofing.

4.3 Detecting TTL misuse

Crafty attack tools can hide from NIDSs in a variety of ways. Among them are insertion at-
tacks [30] based on misuse of the IP TTL field, which determines how many routers a packet may
traverse before being dropped.6 By sending packets with carefully chosen TTL values, an attacker
can make a NIDS believe a given packet will reach the destination while knowing that it won’t.
As a concrete example, the SYN bomb scanner described above is vulnerable to such deception
(ACKs could be sent with small TTL values). This section describes a scanner that detects attempts
to misuse IP TTL values in this manner.

What the scanner looks for: The scanner looks for unexpected variation in the TTL values of
IP packets originating from the host. Specifically, it looks for differing TTL values among packets
of a single TCP session. Although TTL values may vary among inbound packets, because different
packets may legitimately traverse different paths, such variation should not occur within a session.

How the scanner works: The scanner examines the TTL value for TCP packets originating
from a host. The TTL value of the initial SYN packet (for outbound connections) or SYN/ACK
packet (for inbound connections) is recorded in a table until the host side of the connection moves
to the closed state. The TTL value of each subsequent packet for that connection is compared to the
original. Any difference is flagged as TTL misuse, unless it is a RST with TTL=255 (the maximum
value). Both Linux and NetBSD use the maximum TTL value for RST packets, presumably to
maximize their chance of reaching the destination.

When an attack is detected: The current scanner’s policy involves two things. The TTL
fields are normalized to the original value, and an alert is generated.

Performance data: We applied the TTL scanner to the traffic of a Linux desktop engaged
in typical network usage for over an hour. We observed only 2 different TTL values in packets
originating from the desktop: 98.5% of the packets had a TTL of 64 and the remainder had a TTL
of 255. All of the TCP packets were among those with TTL of 64, with one exception: a RST
packet with TTL=255. The other packets with TTL of 255 were ICMP and other non-TCP traffic.

Discussion: This scanner’s detection works well for detecting most NIDS insertion attacks
in TCP streams, since there is no vagueness regarding network topology between a host and its
NI. It can be extended in several ways. First, it should check for low initial TTL values, which
might indicate a non-deterministic insertion attack given some routes being short enough and some
not; detecting departure from observed system default values (e.g., 64 and 255) should be suffi-
cient. Second, it should check TTL values for non-TCP packets. This will again rely on observed
defaults, with one caveat: tools like traceroute legitimately use low and varying TTL values on
non-TCP packets. An augmented scanner would have to understand the pattern exhibited by such
tools in order to restrict the non-flagged TTL variation patterns.

6This should not be confused with the DNS TTL field used in the Code-Red scanner.
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4.4 Detecting IP fragmentation misuse

IP fragmentation can be abused for a variety of attacks. Given known bugs in target machines or
NIDSs, IP fragmentation can be used to crash systems or avoid detection; tools like fragrouter [33]
exist for testing or exploiting IP fragmentation corner cases. Similarly, different interpretations of
overlapping fragments can be exploited to avoid detection. As well, incomplete fragment sets can
be used as a capture-and-hold DoS attack.

What the scanner looks for: The scanner looks for five suspicious uses of IP fragmenta-
tion. First, overlapping IP fragments are not legitimate—a bug in the host software may cause
overlapping, but should not have different data in the overlapping regions—so, the scanner looks
for differing data in overlapping regions. Second, incomplete fragmented packets can only cause
problems for the receiver, so the scanner looks for them. Third, fragments of a given IP packet
should all have the same TTL value. Fourth, only a last fragment should ever be smaller than
the minimum legal MTU of 68 bytes [18]; many NIDS evasion attacks violate this rule to hide
TCP, UDP, or application frame headers from NIDSs that do not reconstitute fragmented packets.
Fifth, IP fragmentation of TCP streams is suspicious. This last item is the least certain, but most
TCP connections negotiate a “maximum segment size” (mss) during setup and modern TCP im-
plementations will also adjust their mss field when an ICMP “fragmentation required” message is
received.

How the scanner works: The scanner subscribes (with contain rights) for all outbound IP
packets that have either the “More Fragments” bit set or a non-zero value for the IP fragment offset.
These two subscriptions capture all Ethernet frames that are part of fragmented IP packets. The
first sequential fragmented packet has the “More Fragments” bit set and a zero offset. Fragments
in between have the “More Fragments” bit set and a non-zero offset. The last fragment doesn’t
have the “More Fragments” bit set but it does have a non-zero offset.

The scanner tracks all pending fragments. Each received fragment is compared to held frag-
ments to determine if it completes a full IP packet. If not, it is added to the cache. When all
fragments for a packet are received at the NI, the scanner determines whether the IP fragmentation
is acceptible. If the full packet is part of a TCP stream, it is flagged. If the fragments have different
TTL values, it is flagged. If any fragment other than the last is smaller than 64 bytes, it is flagged.
If the fragments overlap and the overlapping ranges contain different data, it is flagged. If nothing
is flagged, the fragments are passed in ascending order.

Periodically, the fragment structure is checked to determine if an incomplete packet has been
held for more than a timeout value (currently one second). If so, the pieces are cut. If more than
two such timeouts occur in a second or ten in a minute, the host’s actions are flagged.

When an attack is detected: There are five cases flagged, all of which result in an alert
being generated. In addition, we have the following policies in place: overlapping fragments with
mismatching data are dropped, under the assumption that either the host OS is buggy or one of the
constructions is an attack; fragments with mismatching TTL fields are sent with all TTLs matching
the highest value; incorrectly fragmented packets are dropped; timed out fragments are dropped
(as described); fragmented TCP packets are currently passed (if the other rules are not violated).

Performance data: We ran the scanner against a desktop machine, but observed no IP frag-
mentation during normal operation. With test utilities sending 64KB UDP packets (over Ethernet),
we measured the time delay between the first frame’s arrival at the NI and the last. The average
time before all fragments are received was 0.53ms, with values ranging from 0.46ms to 2.5ms.
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These values indicate that our timeout period may be too generous.
Discussion: Flagging IP fragmentation of TCP streams is only reasonable for operating sys-

tems with modern networking stacks, which can be known by an administrator setting policies.
Older systems may actually employ IP fragmentation rather than aggressive mss maintenance.
Because of this and the possibility of fragmentation by intermediate routers, a rule like this would
not be appropriate for a non-host-specific NIDS.

Our original IP fragmentation scanner also watched for out-of-order IP fragments, since this
is another possible source of reconstitution bugs. In testing, however, we discovered that at least
one OS (Linux) regularly sends its fragments in reverse order. The NI software, therefore, always
waits until all fragments are sent and then propagates them in order.

We originally planned to detect unreasonable usage of fragmentation and undersized frag-
ments by caching the MTU values observed (in ICMP “fragmentation required” messages) for
various destinations. We encountered several difficulties. First, it was unclear how long to retain
the values, since any replacement might cause a false alarm. Second, an external attacker could
fill the MTU cache with generated messages, creating state management difficulties. Third, a con-
spiring external machine with the ability to spoof packets could easily generate the ICMP packets
needed to fool the scanner. Since IP fragmentation is legal, we decided to focus on clear misuses
of it.

As with most of the scanners described, the IP fragmentation scanner is susceptible to space
exhaustion by the host. Specifically, a host could send large numbers of incomplete fragmented
packets, filling the NIs buffer capacity. As noted earlier, however, such an attack mainly damages
the host itself, denying it access to the network. This seems an acceptible trade-off given the
machine’s misbehavior. A similar analysis exists for the other scanners.

4.5 Other scanners

Of course, many other scanners are possible. Any traditional NIDS scanning algorithm fits, both
inbound and outbound, and can be expected to work better (as described in [16, 21]) after the
normalization of IP and TCP done by Siphon. For example, we have built several scanners for
e-mail (virus scanning) and Web (buffer overflows, cookie poisoning, virus scanning) connections.
As well, NIC-embedded prevention/detection of basic spoofing (e.g., of IP addresses) and sniffing
(e.g., by listening with the NI in “promiscuous mode”) are appropriate, as is done in 3Com’s
Embedded Firewall product [1].

Several other examples of evasion and protocol abuse can be detected as well. For example,
misbehaving hosts can increase the rate at which senders transmit data to them by sending early
or partial ACKs [34]; sitting on the NI, a scanner could easily see such misbehavior. A TCP
abuse of more concern is the use of overlapping TCP segments with different data, much like the
overlapping IP fragment example above; usable for NIDS insertion attacks [30], such behavior is
easily detected by a scanner looking for it.

Finally, we believe that the less aggregated and local view of traffic exhibited at the NI will
help with more complex detection schemes, such as those for stepping stones [12, 41] or general
anomaly detection of network traffic. This is an area for future study.
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5 Related Work

Self-securing NIs build on much existing technology and borrow ideas from previous work, as
discussed throughout the flow of this paper. Network intrusion detection, virus detection, and
firewalls are well-established, commonly-used mechanisms [5, 10]. Also, many of the arguments
for distributing firewall functions [14, 19, 27] and embedding them into network interface cards [1,
14] have been made in previous work. Notably, the 3Com Embedded Firewall product [1] extends
NICs with firewall policies such as IP spoofing prevention, promiscuous mode prevention, and
selective filtering of packets based on fields like IP address and port number. This and other
previous work [2, 6, 22] also address the issue of remote policy configuration for such systems.
These previous systems do not focus on host compromise detection and containment like self-
securing NIs do. This paper extends previous work with examples of more detailed analysis of a
host’s traffic enabled by the location of NI-embedded NIDS functionality.

Many network intrusion detection systems exist. One well-described example is Bro [28], an
extensible, real-time, passive network monitor. Bro provides a scripting language for reacting to
pre-programmed network events. Our prototype’s support for writing scanners could be improved
by borrowing from Bro (and others). Embedding NIDS functionality into NIs instead of network
taps creates the scanner containment issue but eliminates several of the challenges described by
Paxson, such as overload attacks, cold starts, dropped packets, and crash attacks. Such embedding
also addresses many of the NIDS attacks described by Ptacek and Newsham [30].

There is much ongoing research into addressing Distributed DoS (DDoS) attacks. Most
counter-measures start from the victim, using traceback and throttling to get as close to sources as
possible. The D-WARD system [23] instead attempts to detect outgoing attacks at source routers,
using anomaly detection on traffic flows, and throttle them closer to home. The arguments for this
approach bear similarity to those for self-securing NIs, though they focus on a different threat:
outgoing DDoS attacks rather than two-stage attacks. The ideas are complementary, and pushing
D-WARD all the way to the true sources (individual NIs) is an idea worth exploring.

A substantial body of research has examined the execution of application functionality by
network cards [13, 17] and infrastructure components [3, 11, 38, 39]. Although scanners are not
fully trusted, they are also not submitted by untrusted clients. Nonetheless, this prior work lays
solid groundwork for resource management within network components.

6 Summary

Self-securing network interfaces are a promising addition to the network security arsenal. This
paper describes their use for identifying and containing compromised hosts within the boundaries
of managed network environments. It illustrates the potential of self-securing NIs with a proto-
type NI kernel and example scanners that address several high-profile network security problems:
insertion and evasion efforts, state-holding DoS attacks, and Code-Red style worms.
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